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Abstract

The objective force will be relying heavily on their sensors to be a combat
multiplier to help improve the force’s effectiveness and survivability,
particularly for reconnaissance, surveillance, and target acquisition
missions. Currently, fielded passive sensor systems are generally
ineffective against camouflage, concealment, and deception. Their
performance is also sensitive to environmental conditions. To meet future
needs, several new sensor systems are being developed and evaluated.
Two of these new sensors are passive systems that collect additional,
measurable characteristics of light: hyperspectral (HS) systems and
spectro-polarimetric (SP) systems.

To fully take advantage of the information that these systems collect
requires new algorithms and techniques. This report discusses why new
techniques are necessary and details the development of a
computer-assisted design system for the discovery of classification
algorithms via a small number of sample target and background
signatures. The technique is called genetic programming (GP). GP is an
adaptive learning technique that automatically generates a computer
program (in this work, a mathematical equation) to solve the problem it
is given.

This report documents work conducted primarily between September
1999 and August 2000, while the author was on a rotation at the
University of Michigan under the Federated Laboratories Consortium
program. The report demonstrates that GP could be a useful technique
for processing HS and SP data. The experiments reported here show that
by using even the simplest of operators (addition, subtraction,
multiplication and division) the GP process can develop interesting and
potentially useful solution equations. The results shown here are
encouraging. However, many questions remain to be answered.
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Executive Summary

Passive sensor systems will be key tools of the lighter, faster Army. However,
currently fielded passive systems are highly susceptible to camouflage, con-
cealment, and deception and environmental conditions—conditions likely
to be encountered by this force. Further, the Army has recognized that ex-
isting systems are inadequate. The lighter forces will be relying heavily on
their sensors to be a combat multiplier, particularly for reconnaissance, sur-
veillance, and target acquisition and indications and early warnings mis-
sions, to help improve the forces effectiveness and survivability. To that
end, several new sensor systems are being developed and evaluated to as-
sist in these missions. Two of the sensors collect additional, measurable char-
acteristics of light: hyperspectral (HS) systems and spectro-polarimetric (SP)
systems. HS systems record not only the intensity of light but also its wave-
length, thus allowing the detection of a spectral signature of the materials
in the scene. SP systems record not only the spectrum of the materials but
also the polarization of the light detected. These new systems produce or-
ders of magnitude more data per frame than traditional systems. The data
must be processed into a useful form to be useful to the soldier. Current
techniques for processing HS and SP data are either too complicated, re-
quiring expert user interaction, or inaccurate (susceptible to false alarms) to
be useful in the field.

To fully take advantage of the information these systems collect requires
new algorithms and techniques. This report discusses why new techniques
are necessary and then details the development of a computer-assisted de-
sign system for the discovery of classification algorithms via a small num-
ber of example target and background signatures. The technique is called
genetic programming (GP).

GP is an adaptive learning technique that automatically generates a com-
puter program (in this work, a mathematical equation) to solve the prob-
lem it is given. GP is a technique to stochastically search the entire space of
possible solutions to find a solution to the problem presented. Being a branch
of genetic algorithm research, GP develops a solution by using operations
similar to biological evolution: reproduction of an individual solution, cross-
over between two individuals, and mutation of an individual solution. Start-
ing with an initial population of potential solutions, GP uses these evolu-
tionary operators to build better solutions.

This report demonstrates that GP could be a useful technique for process-
ing HS and SP data. The experiments reported here show that with the use
of only the simplest of operators (addition, subtraction, multiplication, and
division), interesting and useful solution equations can evolve through the
GP process. Further, only very simple fitness functions were used to gener-
ate these results. Based on these two results, with extension of the types of
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operators used and the inclusion of numerical constant values, better per-
forming equations can be expected. It is clear that further research is needed
into the definition of the fitness function. One goal of investigating the fit-
ness function would be to develop a method to generate a confidence value
for the classification results. The results shown here are encouraging. How-
ever, many questions remain to be answered.

One difficulty encountered that will have significant impact on future ef-
forts is the apparent lack of adequate ground-truthed development and
evaluation data to allow training and quantitative evaluation of a techniques
performance. Until such data become available, it will be difficult to quan-
titatively measure the performance of any technique or to compare the per-
formance of different techniques.




1. Introduction

An important factor for improving the soldier’s survivability in the field is
the speed, range, and accuracy with which he is able to find and identify
targets: friendly, hostile, and in today’s environment, neutral. One method
to assist the soldier in this task is to use “sensors” to extend his capabilities.
Commonly, these sensors only collect information and present it to the sol-
dier as an image. The soldier still must evaluate the image to find and iden-
tify the targets in it. The speed at which the soldier can accurately process
the images covering a fixed field of view (FOV) appears to be decreasing.
This is probably attributable to several factors:

¢ The increasing number of sensors available,

* The increasing number of images that a single sensor presents to the
soldier (frames per second), and

e Theincreasing level of information available in each of the individual
image frames presented.

This decline in performance is clearly unacceptable in tactical situations
where seconds may determine survival.

Clearly, automated processing must be employed to assist the soldier in
processing the large quantity of information available. Automatic target
recognition (ATR) systems have the potential to increase the speed at which
the soldier can process this imagery. Whether an automated system simply
cues the soldier or provides a location and target identification, speed and
accuracy are key features that such systems need to possess. Tactically, a
system that is 100 percent accurate but takes an hour to process each frame
is no more valuable than a system that runs in real time but is only 50 per-
cent accurate.

A number of sensors are available on the battlefield today. The most com-
mon types are passive systems. These passive systems record only the en-
ergy emitted by the scene and /or energy from the environment (commonly,
the sun) reflected from the scene. Two common examples are the forward
looking infrared (FLIR) camera, which records the thermal energy emitted
by the scene and television (TV) which records visible light reflected from
the scene. This information is presented to the soldier as an intensity image.
The more energy recorded for a pixel, the more brightly the pixel is displayed.

Automatic processing of images from these sensors relies on the extraction
of spatial features of some sort from the imagery. A spatial feature is a local
collection of pixels that stand out in some noticeable way from the other
pixels around them. These pixels stand out because they are contrasted with
their neighbors. Unfortunately, situations often occur when there is not
enough contrast in the image to find these spatial features.




Low contrast situations are likely to occur with even greater frequency in
environments into which the Full Spectrum Brigade is likely to be deployed.
The brigade will rely heavily on its reconnaissance, surveillance, and target
acquisition (RSTA) squadron for situational awareness and indications and
early warning (IEW) activities. The Army is well aware of current sensor
suites’ shortfalls and recognizes that a more robust sensor suite is needed to
enhance the RSTA squadron’s capabilities.

Other passive sensors can collect additional information beyond the light’s
intensity. One type of sensor collects spectral information, that is, the inten-
sity of the light over small wavelength ranges. Using spectral information,
one can discriminate between materials that are indistinguishable in a broad-
band image, such as FLIR or TV. Additionally, if the spectral resolution is
high enough, materials can even be identified. Another characteristic of light
that may be useful to exploit for discrimination and detection purposes is
the light’s polarization.

To develop and use new hyperspectral (HS) and spectro-polarimetric (SP)
applications requires some level of automated processing. A challenge now
is to develop automated analytical techniques to take advantage of HS and
SP systems, to assist users in using this new capability, and to process the
vast amounts of data that these sensors will make available. In addition,
since HS and SP applications are relatively new, it would benefit the com-
munity to have available development tools to aid in determining useful
spectral features and/or polarizations for particular tasks. '

This report documents work done in applying an adaptive learning tech-
nique called genetic programming (GP) to HS and SP imagery. This techni-
cal report shows that GP has the potential to be a key tool in image process-
ing and feature extraction. The goal of this research project was to construct
a computer-assisted design system for the discovery of classification algo-
rithms and germane band information via a small number of example sen-
sor data from user-defined classes.

The next section explains why new techniques are necessary by reviewing
some background about the sensors and techniques currently available.
Section 3 defines genetic programming. Section 4 details the system de-
signed for this effort. Section 5 documents evaluation and experimented in-
scene results. Section 6 addresses results with three evaluation images. Fi-
nally, section 7 discusses the project results and outlines where to go from
here.




2. Background

2.1 The Sensors

A number of sensors are available on the battlefield today. The most com-
mon types are passive systems. These passive systems record only the en-
ergy emitted by the scene and/or the energy from the environment reflected
from the scene. As mentioned earlier, two common examples are FLIR, which
records the thermal energy emitted by the scene, and TV, which records
visible light reflected from the scene.

Both FLIR and black-and-white TV (BWTV) are considered broadband sys-
tems. They record light over a broad range of wavelengths. FLIR generally
is sensitive to the thermal infrared range of 8 to 12 microns while BWTV
covers the visible range from ~0.4 to 0.8 micron. ATR algorithms designed
to process broadband data rely on the contrast between objects for detec-
tion. Most ATR systems use spatial features extracted from these contrast
areas for detection and recognition (e.g., Der and Chellappa, 1997; McKee
and Bandera, 1998; Wang, Der, and Nasrabadi, 1998; and Hecht-Nielsen
and Zhou, 1995). If there is no contrast, these spatial features cannot be
extracted. For example, with FLIR systems, objects are difficult to resolve as
separate entities when both have similar apparent temperatures.

This condition occurs more often than one might think. For example, as-
sume that the object to be detected is a vehicle. If the vehicle is not active, it
will reach a thermal equilibrium with its environment. Differences in the
thermal mass and the thermal conductance of targets and background ob-
jects allow natural outside energy sources, such as the sun, to affect the
surface temperature of the object. These differences in thermal mass and
conductance are reflected in the different rates of change in each object’s
apparent temperature. Objects such as leaves and grass have low thermal
mass and high conductance and thus change temperature rapidly to reflect
current energy flux conditions. On the other hand, a large metal vehicle has
a large thermal mass and a high thermal conductance and it therefore heats
and cools slowly; yet its surface responds rapidly to direct sunlight by warm-
ing rapidly. This leads to conditions where near-zero contrast events occur
shortly after dawn and dusk as the vegetation warms or cools rapidly and
the vehicle does not. For a period of time, the vegetation and vehicle have
the same apparent temperature. For a short time during these “cross-over”
times, there is zero contrast. Therefore, no spatial features can be extracted.
Beyond this and other natural contrast reductions, spatial features can be
and are intentionally obscured through the use of camouflage, concealment,
and deception (CC&D) by either obscuring the feature itself or reducing the
contrast so that the feature cannot be detected in FLIR or BWTV imagery.



Table 1. LandSat TM
bands.

One method for discriminating between objects that look similar in broad-
band imagery is to use multi-band or multi-spectral (MS) imagery. For ex-
ample, color television collects images in three narrower bands (blue, green,
and red), while seven spectral bands are collected with the LandSat the-
matic mapper (TM), six bands covering regions from the blue to the near IR
and one in the thermal IR (see table 1). By comparing intensities in different
bands, we can separate objects or materials that are indistinguishable in a
broadband image. Figure 1 shows images collected by the LandSat TM sen-
sor. The four images show Bands 1 through 4. Close examination reveals
some differences between the images, particularly in the water areas near
the beaches. However, it is very difficult to easily discriminate differentland
use areas in the individual band images.

Figure 2 shows two different color images created with three of the images
from figure 1. Figure 2(b) is a “true color” image, which renders a color
photograph of the scene. Figure 2(a) is a “false color” representation where
the RGB bands of the image represent the next higher spectral band of the
TM sensor. Blue in the image represents the green band of the sensor. Green
in the image represents the red band of the sensor and red in the image
represents the near IR band in the image.

Historically, this false color band mapping to the RGB pallet is used to re-
produce the pallet obtained from IR photographic film. Its importance is
that it highlights vegetation in shades of red. This is an example of using a
broad spectral feature or a spectral signature to discriminate materials. This
spectral approach can be used to find materials of interest and highlight
them and suppress materials such as grass or trees. This improves the con-
trast of objects of interest. These enhanced images can then be spatially proc-
essed in a more traditional manner.

MS imagers for remote sensing have been in operation since at least the
mid-1970s. Since that time, they have proved their value in many applica-
tions, such as crop yield estimation, forest harvest monitoring, evaluation
of soil conditions, crop and timber type identification, regional planning,
and cartographic revisions.! However, since MS systems have inherently

Band no. Wavelength Spectral Spatial resolution

interval (um) response (m)

1 0.45-0.52 Blue-Green 30

2 0.52-0.60 Green 30

3 0.63-0.69 Red 30

4 0.76-0.90 Near IR 30

5 1.55-1.75 Mid-IR 30

6 10.40-12.50 Thermal IR 120

7 2.08-2.35 Mid-IR 30

IFor an extensive table of LandSat 7 applications, see http://landsat. gsfc.nasa.gov/ im-
ages/ Landsat_Applications.html




Figure 1. LandSat TM
images of Moro Bay,
CA January 25, 1988.
(Top left band 1, top
right band 2, bottom
left band 3, and
bottom right band 4.)!

Images in figure 1
taken from http://
rst.gsfc.nasa.gov/

Sectl/Sect1_3.html

Figure 2. (a) False Color composite of Moro Bay (Red = band 4, Green = band 3, Blue = band 2.) (b) True
color composite image (Red = band 3, Green = band 2 and Blue = band 1.)2

ZImages in figure 2 taken from http://rst.gsfc.nasa.gov/Sect1/Sectl_8.html and Sectl_10.html



Table 2. Several
important HS systems.

broad spectral resolution, their usefulness is limited to discriminating be-
tween objects with significantly different and broad spectral characteris-
tics, such as trees from dirt or red flags from green flags. Objects that differ
only at finer spectral resolutions cannot be distinguished easily, if at all,
such as oak trees from pine trees or pink flags from red flags. Sensors of
these types would be of limited value in tactical situations. However, they
do suggest an approach to suppressing clutter and detecting targets. The
suggestion is that the use of more and finer spectral bands may allow dis-
crimination of spectrally similar materials.

Typically, a system with a bandwidth on the order of 20 nm or less and with
100 or more bands of contiguous coverage over the system'’s spectral range
is considered to be an HS system, although other definitions are commonly

found.

Although current HS imagers are primarily experimental research systems,
they are becoming more common. A number of airborne systems exist and
several satellite systems are scheduled for launch in the near future.?” Table 2
shows a few HS systems currently available. For a more extensive list of HS
systems, see appendix D of the Remote Sensing Tutorial at http://
rst.gsfc.nasa.gov.

With spectral resolution of this level, it is possible to identify materials in
the image by their spectra. Using these spectral signatures, we can identify
and suppress natural materials in a scene, allowing spatial detection of ob-
jects of interest. Further, identification of materials such as metal, paints,
textiles, and so forth can be used to highlight areas or objects of interestin a
scene. IR HS systems can also be used for the identification of many

chemicals.
Another characteristic of light that can also be exploited for discrimination

tasks during certain circumstances is the polarization of the light (Guenther,
1990; Slater, 1980; Wolff, 1995). The reflection (in the visible) and emission

Approximate
Spectral Number bandwidth
Year range of of each

System Sponsor fielded microns bands band (nm)
AVIRIS NASA 1987 4to25 228 10
HYDICE NRL 1995 4to25 206 10
SEBASS AFRL 1997 7.4to 14 128 10
FTHSI AFRL 2000 35t01 256 17

2The Moderate Resolution Imaging Spectroradiometer Proto-flight model was launched
in December 1999. First-light data were collected in February 2000. With 36 bands of band-
widths from 20 to 300 nm., it is considered by some an HS system.

3AFRLs MightSat I1.1 was launched in July 2000 with an imaging Fourier transform spec-
trometer aboard.




(in the thermal) characteristics of material surfaces can define the light’s
polarization. This polarization may prove useful for discrimination tasks
by affecting the contrast between materials. Additionally, environmental
conditions (moisture, multiple reflections, multi-path reflections, etc) can
alter the light’s polarization, which may prove useful for determining some
atmospheric conditions of the transmission path.

Recently, some experimental imaging sensors have been constructed, which
collect spectral information as well as polarization information for each
spectral band. These imaging SPs or HS polarimeters have the potential to
assist in discriminating different materials in an image through both spec-
tral and polarimetric means.

Using the additional information supplied by HS and SP imagers, we can
detect targets even when there is little or no broadband contrast with the
local background, we can suppress false alarms, and we can highlight and
identify CC&D (Rauss, Cederquist, Dwan, and Wegrzyn, 1999). These tasks
can all be performed basically in the same way, by identifying the material(s)
in each image pixel via its spectral or SP signature. Once processed in this
manner, the image can be reconstructed to highlight materials of interest
and to suppress those not of interest (Rauss, Cederquist, Dwan, and
Wegrzyn, 1999; Rauss, Daida, and Chaudhary, 2000). This identification can
be used to generate a classification image with better contrast between ob-
jects. These new image maps can then be spatially processed in more com-
mon ways. Figures 3 and 4 show an example of the advantage that an HS
sensor can give with the right processing. Figure 3 shows a simulated FLIR
image that was created by the summing of all the bands from an IR HS

Figure 3. Broadband
image of HS scene
with six targets.

Figure 4. Processed HS
image clearly revealing i
four of the six targets.
(Boxes added to show
target locations.

Dashed boxes indicate
missed targets.)




2.2 The Software

Table 3. Differences
between MS and HS
imaging systems.
(AOTF refers to the
system whose data are
used in this report, see
sect. 4.2 for details.)
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imager. There are six targets in the image. Obviously, the contrast level is
very low. The targets are in a high clutter environment and CC&D is in use.

Figure 4 shows the results of performing advanced HS processing on the
spectral image cube. Four of the six targets are now clearly visible. Much of
the clutter has been suppressed, and this image could be spatially processed
to find at least the four obvious targets and suppress much of the remaining
clutter. Figure 4 also points out that HS sensors will not necessarily allow
recognition of the target. In this case, all the targets are under camouflage
nets and only the silhouette of the nets can be seen. Identification of which
target (if any) is under the nets is not possible.

Experimental HS and SP sensors are beginning to collect research and de-
velopment data in the visible and the IR ranges. One difficulty is the tre-
mendous increase in the amount of information collected for each pixel with
such systems. Table 3 shows some of the typical differences between MS
and HS systems; particularly note the size of the standard data files.

The hardware is proving to be viable but to be truly useful, the data must be
processed into a user-friendly form, whether the user is the next algorithm
in the system or a soldier in the field.

Data analysis techniques lag behind hardware development for several rea-
sons. First, only in recent years have computers become commonly avail-
able that are capable of processing the huge amounts of data collected by
HS and SP systems in useful time frames. Second, the information content
of the sensors has gone from simple, in the broadband case, to highly com-
plex in an HS or SP image. ATR algorithms for broadband imagers such as
FLIR were developed with only the relatively simple information content
available. While the application of these techniques to MS, HS, or SP sys-
tems may show some evolutionary improvement in performance, signifi-
cant improvements are unlikely without taking advantage of the additional
information content found in these data streams. Finally, to be effective,

System features Multispectral Hyperspectral
Number of bands 7 (LandSat TM) 224 (AVIRIS)
Thematic mapper 112 (AOTF)
Spectral resolution (nm) 450 to 1250 10 (AVIRIS)

(LandSat) 10-20 (AOTF)

First deployment 1972 (LandSat 1) 1987 (AVIRIS)
1997 (AOTF)

Common deployment Satellite Airborne (AVIRIS)
Ground (AOTF)
Typical single image cube 2.1 (LandSat TM) 140 (AVIRIS)
file size (MB) 34 (AOTF)




algorithm development needs data from actual sensors. Therefore, it is nec-
essary to wait until the sensors progress beyond the early experimental stage
and begin collecting realistic data before experimental algorithm develop-
ment and testing can take place. Furthermore, to develop and evaluate al-
gorithms for realistic conditions, algorithm developers must wait for suffi-
cient quantities of accurate ground truthed data to be collected with the
actual hardware. The data must cover realistic variations in content and
quality to allow proper algorithm evaluation. Data collected in a hot desert
environment will probably not adequately support development of an al-
gorithm to be used in tropical or temperate environments.

The potential value of HS and SP imaging is high, but the number of exist-
ing applications is presently small for several reasons. First, the imagers are
relatively new, so applications unique to them have yet to be fully identi-
fied and developed. Second, many of the existing applications are based on
MS approaches. These adaptations often do not exploit the strength of HS
data, or their fine spectral resolution, and do not even address polarization.
This results in only incremental performance improvements over the MS
applications. Third, tools to investigate new applications for HS and SP
imagery are not common. Fourth, most existing tools for exploiting HS im-
agery require extensive knowledge of spectroscopic techniques. This ex-
pertise is uncommon for many of the potential users and application devel-
opers. Finally, the data files themselves can be very intimidating, easily reach-
ing gigabytes in size for even small data collections.

2.2.1 Broadband Analytical Techniques

An extensive body of work involving detection and recognition of objects
in single band or color (three-band) imagery exists. Military research in the
field is limited, when compared to the amount of work done in computer
vision and commercial image-processing techniques. Many books, journals,
and newsletters are dedicated to computer and machine vision, image proc-
essing, image understanding, and so on.

However, the quality of the military research is at the high end of the range
of research performed or conducted. This is primarily attributable to the
difficulty of the military problem. Performance levels must be extremely
high, as already mentioned, and many of the more common approaches
cannot perform at those levels. This leads military research to use the most
cutting edge techniques such as neural networks, Markov fields, wavelets,
image understanding, and other highly sophisticated approaches.

Most of this military work has been conducted primarily with radar in its
various forms, FLIR imagery, and to a lesser extent, laser radar. The Society
of Photo-Optical Instrumentation Engineers AreoSense conference regularly
has multiple sessions dedicated to target detection and target recognition
research and development. An ATR Working Group, a joint Government
(primarily DoD), and industrial (primarily defense contractors) group also
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discusses and presents classified work in target detection and recognition
R&D.

With the research that has been applied to passive ATR efforts, it is becom-
ing more and more difficult to achieve higher levels of performance with
these methods. During certain conditions, these techniques can achieve use-
ful levels of performance. Unfortunately, the conditions necessary for ad-
equate performance levels are somewhat limited. The community has been
focusing in recent years on augmenting single broadband sensor techniques
with other sensors in a data fusion approach, which can be thought of as a
MS approach.

2.2.2 Multi-band Analytical Techniques
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There are a number of established techniques for exploiting spectral con-
tent of MS imagery for remote sensing applications (Tassel Cap [Kauth and
Thomas, 1976], [Crist and Cicone, 1984]; Atmospherically Resistant Vegeta-
tion Index [Kaufman and Tanre, 1992]; Normalized Difference Vegetation
Index [NDVI] [Goward, Markham, Dye, Dulaney, and Yang, 1991]; abductive
polynomials [Drake, Kim, and Kim, 1993]; and principal component analy-
sis (PCA) [Jiaju, 1988], [Cleva, Cachet, Cabrol-Bass, and Forrest, 1997], to
name a few). However, when these techniques are applied to HS data, there
are several difficulties. Many of these techniques are forms of band ratioing.
NDVI, for instance, is simply a normalized ratioing of a near-IR band and a
red band, which highlights healthy vegetation by exploiting a broad spec-
tral feature of chlorophyll

Determining useful band ratios in MS imagery is relatively simple. There
are n*(n-1) possible ratios (n is the number of spectral bands of the sensor).
We can assume that there are only half that number if we accept that in-

band 1
verse ratios highlight the same features with opposite contrast (band 3 is

the inverse of %‘% ). For LandSat data (the thermal band is excluded

because of its much larger spatial resolution), there are 15 (6*(6-1)/2) pos-
sible ratios. It is a simple matter to visually examine all 15 ratios to deter-
mine which generate useful contrast enhancements. It is even relatively
simple to use these ratioed images as input for false color images and to
visually investigate the false color images for useful representations. How-
ever, with 2,730 possible three-color combinations of ratioed images, it is
unlikely all 2,730 would be examined exhaustively. Combinations based on
the ratio images that highlight the features of interest would be used to
guide the generation of false color images. However, for HS imagery, the
number of combinations rapidly becomes unmanageable, as demonstrated
in table 4.

One method of reducing the dimensionality of such a large search space is
PCA and its variations (Smith, Johnson, and Adams, 1985; Lee, Woodyatt,
and Berman, 1990; Harsanyi and Chang, 1994; Cowe and McNichol, 1985).




Table 4. Demonstration of the rapid growth in the number of images possible for HS and SP systems.

Number of 3-band Number of Number of 3-band

Number of false color images unique ratio false color images

Sensor bands using single bands images using ratio images
n n*(n-1)*(n-2) m=n*(n-1)/2 m*(m-1)*(m-2)
Color TV 3 6 3 6
LandSat TM 6 (excluding 120 15 2730
thermal)

AOTF spectro- 28 19 656 378 5.36 x 107
polarimetric single or or or or
polarization 55 157 410 1485 3.27 x 10°
AQTEF spectro- 110 1294 920 5995 1.66 x 101
polarimetric two
polarizations
AOQOTEF spectro- 112 1367 520 6216 2.4 x 101
polarimetric four
polarizations
SEBASS 128 2 048 256 8128 5.37 x 101
AVIRIS 224 11 089 344 24976 1.56 x 10%3

PCA is a common tool used in multispectral imagery applications. The tech-
nique works best when knowledge of atmospheric conditions is available
(for radiometric corrections of the data, before reduction). Otherwise, the
atmosphere is mixed with the other components of interest, which makes it
difficult to identify them. The knowledge needed for atmospheric compen-
sation represents a significant effort in data correction, which at best re-
quires corroborative measurements from field work and in situ instruments.
Furthermore, the relevance of the corroborative measurements usually per-
sists only for the time of the data collection; the measurements do not gen-
erally apply to any other times or locations. These types of measurements
are not likely to be available during tactical operations, thereby reducing
the usefulness of PCA type processing.

If a complete characterization of the atmosphere is not available for correc-
tion but some knowledge of the atmosphere is known, it is possible to use
an atmospheric model such as ModTran or FASCODE (Air Force Research
Laboratory, Hanscome Air Force Base, MA) to generate an approximation
of the atmosphere. These models use the HiTran database of atmospheric
absorption lines to generate models of atmospheric transmission, absorp-
tion, and radiance effects. These models can then be used in a number of
atmospheric correction routines that can be applied to the sensor data (e.g.,
Richter, 1996, or Anderson, Pukall, Allred, Jeong, Hoke, Chetwynd, Golden,
Berk, Bernstein, Richtsmeier, Acharya, and Ma, 1999).
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These models are highly flexible and allow modeling of numerous condi-
tions. Unfortunately, without knowledge of the actual values for many of
the variables, any model computed will be approximate at best. At worst, it
could severely corrupt the data. While determining these variables is usu-
ally easier than recording the actual atmospheric conditions, to generate a
very accurate model requires a large number of variables and significant
computation time. Further, these models are static and may quickly deviate
from the real atmospheric conditions, so a model that corrects one image
well may not do as well with the next image collected. These difficulties are
often minor when one is working with MS data. These errors have a less
significant impact because of the lower spectral resolution of the data. Thus,
lower resolution models can be used, which require fewer parameters.

An alternative to using a model is to remove the atmospheric conditions
from the data through an “in-scene” atmospheric correction. This approach
uses the responses of pixels in the scene to estimate the effect of the atmos-
phere. To do this, there must be “known” materials in the image. The re-
corded spectrum of the material is compared to a laboratory spectrum of
the material, the difference between them being the correction needed to
account for the intervening atmosphere. Of course, this requires known
materials to be in the image, a condition that will often not be true. Also, if
the pixels used for correction are not purely of one material, then the cor-
rection will also remove the spectrum of the other material, which may not
be the desired effect and generally reduces the usefulness of the correction.

2.2.3 Hyperspectral Techniques
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These atmospheric corrections and models are of some value when they are
used on HS data from sensors with large instantaneous FOVs (IFOVs). These
systems, usually high altitude platforms, collect data where a single pixel
has a footprint on the ground of a hundreds of meters or more on a side.
Over this large spatial coverage, any small variations in the atmosphere are
averaged spatially and thus “standard” atmospheric models can be used to
correct the data to some extent. However, a tactical sensor may have an
IFOV an order of magnitude or more smaller than an airborne or space-
borne platform (<1 meter square as opposed to >1 kilometer square). This
removes the spatial averaging effect and as a result, corrections made with
atmospheric models will often be significantly poorer on small IFOV sys-
tems than those made for systems with large IFOVs. The same goes for in-
scene corrections, since the atmospheric conditions in one region of the scene
can be very different from those in another region. These variations over
the scene result in over- and under-corrections for many of the pixels, which
will degrade detection and recognition performance.

Another source of error is that as spectral resolution increases, more atmos-
pheric contaminants impact the system. Many of these contaminants are
not included in the model calculations and many of them are not even in
the absorption databases. Some of these contaminants have very narrow




Figure 5. Why HS
systems are more
sensitive to
contamination and
noise effects.

but strong transmission or absorption lines, which with lower spectral reso-
lution systems are hardly noticeable but can have large impacts on higher
resolution systems (see fig. 5).

As HS systems improve in both spectral resolution and sensitivity, valida-
tion experiments comparing real atmospheric measurements to models of
the same conditions continue to reveal deviations between the real and
modeled results. Many of these discrepancies are attributable to approxi-
mations and simplifications made in the models, which were either ignored
earlier because the error was slight or are only just becoming observable
because of the improvements in the sensors. Significant ongoing research
continues to improve and correct the models and the atmospheric correc-
tions based on them.

Additionally, atmospheric correction techniques for HS data generally as-
sume an airborne or space-borne platform that is looking straight down.
For ground and low-altitude tactical scenarios, this will not be the case. The
transmission path through the atmosphere in the tactical situation is very
different from what is modeled for the overhead case.

For some situations, these deviations are not terribly detrimental. How-
ever, for high performance systems, such as those needed for a tactical sys-
tem, these deviations, even when small, can severely impact performance.
Achieving the high detection rates and low false alarm rates needed for a
tactical system requires any corrections to be very accurate. Any correction
that is not perfect will lead to some corruption of the corrected data.

The various difficulties with atmospheric models and corrections mentioned
all combine to corrupt the “corrected” data and thus potentially reduce de-
tection performance, increase false alarms, or both, which is usually

1 multispectral band »>
MS detector
150 ~—— True recorded value
True spectral curve | should be 1905.
145 — Actual value
recorded is 1869.
140 — N 2% lower than true.
\‘~
135 — M
130 —
125 —
120 —
115 — Absorption line from
contaminant.
110 —
\ HS detector 13
105 — L True recorded value
should be 137.
100 — Actual vaI'ue
13 recorded is 101.
27% lower than true.

15 hyperspectral bands
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unacceptable. As a result, it can be hit or miss as to whether a particular
correction technique will perform adequately on a particular HS image. The
need is for a more general approach, which is either less sensitive to these
deviations or does not require corrections.

A large body of work exists in classifying high-resolution spectra under
laboratory conditions. Using any electronic search technique will reveal
papers, books, monographs, and journals about this topic, going back at
least to the late 1800’s. This type of data is generally not collected with im-
aging systems but can be thought of as a single pixel. These laboratory tech-
niques are very successful in identifying material and chemical spectra. Some
of these techniques are also successful in separating mixed spectra, that is,
spectral signals containing spectra of two or more materials. The most com-
mon methods in modern laboratory spectroscopic analysis software are
absolute value of differences, Euclidean distance, peak matching, least
squares distance, first derivative least squares fitting and second derivative
least squares fitting. These methods, with the exception of peak matching,
all compare the query spectrum with a library of spectra and measure the
differences among them. The unknown spectrum is identified as the library
spectrum that it matches with the least error. The primary reason these well-
established techniques are not more often used in remote sensing is their
extreme sensitivity to the signal-to-noise ratio (Rauss, 1992). Studies have
shown that just 5 percent random noise on a signal will significantly de-
grade performance of these techniques. During remote sensing conditions,
the noise levels are often significantly higher than 5 percent. In some ex-
treme applications, noise may be the dominant feature in the recorded data.
The noise may be system noise as well as atmospheric contamination.

HS systems are far more susceptible to noise, contamination, and correc-
tion accuracy problems because of their narrow spectral bandwidths. An
irradiance of acceptable strength for a MS system might be divided into 20
or 100 separate bands in an HS system. This would reduce the irradiance
recorded by each band’s detector by 20 or 100, respectively (see fig. 5). In
remote sensing applications, the signal strength is often low to begin with
because of low signal, fast sampling times, and atmospheric absorption;
reducing it an order of magnitude or two further is a major concern for HS
systems. It seems unlikely that HS remote sensing systems will often have
signals strong enough for laboratory techniques to be applied.

Since 1990, the U.S. Geological Survey has been developing a system called
Tetracorder (formerly known as Tricorder) (Clark and Swayze, 1995) for
classifying HS data for remote sensing applications. Tetracorder replicates
the process that an expert in spectroscopic analysis would follow using more
than 120 high-quality laboratory spectra of environmental materials for com-
parison. Tetracorder uses a least squares curve-fitting method to compare
the pixel spectra with the library spectra to find the best match. However,
the system requires expert understanding and experience in spectroscopic
analysis for proper use in any but the simplest of classification tasks. The




Tetracorder is very sensitive to the accuracy of the atmospheric correction,
since comparisons of materials with similar spectral curves are greatly af-
fected by inaccurate corrections. Furthermore, expert knowledge of the soft-
ware and imaging system is needed to modify the Tetracorder software to
match a new imaging system. Often, neither atmospheric data nor details
about the imager are readily available with existing HS data sets. Signifi-
cant effort also appears necessary to add new materials to the system li-
brary, limiting the method’s usefulness in developing new or radical appli-
cations, especially since many of the contaminants and materials in a tacti-
cal scenario are not likely to be commonly seen elsewhere. As a result, it is
highly unlikely that these materials are in the current Tetracorder library.

2.2.4 Spectro-polarimetric Techniques

SP processing, especially with respect to military applications, is a relatively
new field. The spectral side of the data must address the same difficulties as
the HS approach, which was discussed in the previous section. Polarimetery
has been examined as a method of discriminating materials and surfaces in
imagery. Reflected light’s polarization depends on the three-dimensional
geometry defined by the angle of incidence, the angle of reflection, the sur-
face plane angle of the reflecting material, and the location of the observer,
as well as the reflecting material’s composition and smoothness. This is com-
monly described as the bi-directional reflectance distribution function
(BRDF). These angles are highly variable and depend on the position and
motion of the object, the observer, and the light source (the sun).

Smooth materials (often man made) tend to preferentially polarize reflected
light, although to what extent depends highly on the BRDF geometry just
mentioned. In the IR, structural materials (metal, glass, plastic) and coat-
ings (paints) appear smooth, resulting in observable polarization effects.*
However, because of the variability of the BRDF, polarization may be an
inconsistent feature. Polarization is also greatly affected by the atmospheric
conditions, especially aerosol and particulate concentration, which can se-
verely alter the polarization of the light as it travels to the sensor. This could
mask the polarization differences that could be used for detection and dis-
crimination tasks. It seems unlikely that material will be identifiable by
polarization alone. However, it may be useful in clutter suppression and
possibly in monitoring atmospheric conditions.

Clearly, new techniques are needed to address at least some of these issues
in order to take advantage of the information available from HS and SP
sensors. The remainder of this report discusses experiments that employ an
adaptive learning technique called genetic programming for detection and
recognition of different materials in HS and SP imagery.

“See IRIA technote: http://csdnta.erim-int.com/IRIA/ SRPUB.NSF/
957aa8092ef9753f85256747004£9331 /200236e47983509£852563ed004e0969?OpenDocument
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3. Genetic Programming
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GP is a method of automatically generating a computer program (or, as
used in this particular work, a mathematical equation) to solve a particular
problem. GPis a branch of genetic algorithm (GA) research. While GP shares
many of GA’s underpinnings, terminology, and operators, GP’s implemen-
tation is quite different, resulting in substantially different results than the
GA approach. GP accomplishes this through a series of operations similar
to biological evolution. These operations are reproduction, crossover, and
mutation. A number of good books about the topic are available, including
Koza, Bennett, Adre, and Keane (1999) and Banzhaf, Nordin, Keller, and
Francone (1998), as well as several web sites. Two good internet tutorial
sites are www.genetic programming.com/Tutorial /index.html and
www.genetic-programming. com/gpanimatedtutorial.html.

The GP technique used in this work operates on equation trees. The result
of the GP learning process is a single mathematical equation that obtains
the most correct answers with the training data. This equation uses simple
mathematical operators to combine the intensity values of the individual
HS bands to compute a single numeric value for each pixel. This value de-
termines the pixel’s classification as the desired class or not. Obviously, given
some constraints on the set of equation trees, such as available operators
(mathematical functions) and terminals (the band intensities and numeric
constants), the maximum and minimum allowable tree depth, and the maxi-
mum allowable tree breadth, one or more equation trees will obtain a mini-
mum error with the training data. An obvious way to find this equation(s)
is to process every possible equation in this set. Unfortunately, as the num-
ber of terminals and operators increases and the tree breadth and depth
increase, the number of possible equations becomes impossible to fully
search in a useful time frame with currently available computer systems.

What GP does is allow a stochastic searching of this equation space through
evolutionary development of the equations. The GP process works like this.
Alarge (but manageable) number of random equation trees are generated.
This initial set of equations is referred to as the “generation zero popula-
tion”. These equations are evaluated with the training data against some
fitness function. For this effort, the fitness function is the number of cor-
rectly classified training pixels. How this is done is covered in section 4.6.2.
The best (most accurate) performers are then used to create some number
of new equations to replace some of the poorer performers. This new popu-
lation of equations is the next generation: Generation 1.

The new equations in the population of Generation 1 are obtained by the
use of one of the three evolutionary operations on the best performers of
Generation 0. Which operation used is chosen probabilistically. In one pos-
sible operation, a “best performer” (BP) has a probability of being




Figure 6. Example of
mutating an operator
and a terminal. (Note:
only one mutation
would be performed in
any one operation.)

Figure 7. Mutation of
tree through replace-
ment of one branch
with a copy of another.
(The bold sub-tree in
the left tree is replaced
by a copy of the
outlined sub-tree.)

reproduced exactly in the Generation 1 population, thus increasing its odds
of being selected in future generation if it continues to perform well. In the
second possible operation, each BP has a probability that it will be mutated.
The mutated equation is then added to the Generation 1 population. There
are two types of possible mutations. In the simplest, one node of the tree is
randomly selected and randomly changed (following any constraints of that
particular node; branches cannot be replaced with leaves, etc). Figure 6 shows
an example of two simple mutations, one on an operator and one on a vari-
able. Only one of these types of mutation would be used to create a new
equation; they are combined in this figure only to save space.

The second type of mutation is replacing a branch in the tree with a copy of
another branch. Figure 7 shows an example of this type of mutation.

In the third possible operation, a selected BP equation tree is “bred” with
another BP equation through a cross-over operation. In a crossover, the two
original equations, called the parents, swap randomly selected branches,
creating two new equations, the children. Figure 8 shows an example of
crossover.

Figure 8 also shows how a common formula could be evolved through the
GP process. The child on the right is the tree representation of the quadratic
equation. This type of tree crossover differs from a GA implementation in

O

Original equation tree. Mutated operator and terminal.

(A X RN RN XN N

Original equation tree. Result of mutation.
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Figure 8. Cross-over
operation. (Bold
branches are swapped
between parents to
create new children.)
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that if the same tree is used as both parents in GA, both children are identi-
cal, whereas in GP, the children are different, unless the branches swapped
happen to be identical.

After this “breeding” phase, the new population of equations is evaluated
against the training data. Then the Generation 1 “best performers” are used
to create new equations for the Generation 2 population of equations. The
Generation 2 equations are evaluated and so on, until an equation correctly
classifies all the training data or until some pre-defined number of genera-
tions is created. The “best” equation from this process is a solution to the
problem.

This equation very likely will not be the best possible solution. It is only the
best equation found through evolving the equations in the Generation 0
starting population. It is important to remember this because beginning with
a different starting population will usually lead to a different solution equa-
tion unless the problem to solve is very simple.

To find a more optimal solution, it is necessary to run the GP learning proc-
ess many times, beginning with different starting populations each time.
Performing the process many times allows a stochastic sampling of the




entire space of possible equations. Once the equation space has been ad-
equately sampled, the “best” equations from each run are collected and
then compared to determine which are the most useful for the task at hand.

3.1 GP in Image Processing

Encouraging results have been obtained with GP techniques used with other
types of remote sensing data, such as synthetic aperture radar (Daida,
Hommes, Bersano-Begey, Ross, and Vesecky, 1996; Daida, Onstott, Bersano-
Begey, Ross, and Vesecky, 1996) and infrared line scanner data (Roberts and
Howard, 1999). GP has also been shown to be a key tool in image process-
ing and feature extraction (Tackett, 1993; Brumby et al., 1999; Howard and
Roberts, 1999).

A key advantage of GP versus other adaptive learning techniques is that
GP gives an explicit equation as its result. For example, take a simple hypo-
thetical MS example that uses LandSat TM data. Assuming that the desired
result is to contrast vegetation pixels from other types of pixels, the GP proc-
ess could result in the following equation:

band 3—-band 4
band 4 + band 3

which is a version of the standard NDVI equation used for LandSat TM
data.

This example shows how GP could be used for data mining or compres-
sion. Assuming that the highlighting of green vegetation is the goal, the
equation shows that only two of the six bands are needed. This may indi-
cate a method of reducing or compressing the data for transmission pur-
poses. For this example, only Bands 3 and 4 are being used. If highlighting
vegetation is the only task the system is to perform, then only these two
bands need be transmitted from the system. The equation itself may also
expose some relationship between the input values that may be exploited
with other techniques. In the example, the equation is exploiting a signifi-
cant spectral feature of chlorophyll.

Adaptive learning techniques such as GP are attractive for HS image proc-
essing because such techniques adaptively “learn” any necessary radiometric
and atmospheric corrections. The user does not have to explicitly state (or
even be aware of) those corrections. Furthermore, these techniques can also
address spectral contamination, such as pollutants in the atmosphere. None
of the more common techniques even try to address spectral contamination
because it is impossible to adequately model all the possible conditions.
Furthermore, atmospheric contaminants that may commonly be seen on
the battlefield are not commonly found in the natural environment, which
is the primary focus of most remote sensing work.

Using GP on HS data has the potential to address many of the difficulties of
working with HS data. This method could be a relatively simple tool to
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allow application design and experimentation. This could encourage the
development of new applications. The method is supplied with all the band
information during training, allowing the exploitation of the finer spectral
resolution of the data. Spectroscopic techniques are not required to design
classification experiments. If a poor choice of classes is made, GP will fail to
develop a satisfactory solution. This tool could be relatively easy to use. It
would not require expert spectroscopic knowledge for useful applications
to be developed. Finally, GP results in a specific classification equation. This
equation can be evaluated to try to understand the underlying physics of
the classification and to reduce the storage capacity needed for application
data. One can reduced storage by determining the spectral bands necessary
for the particular classifications and by allowing the use of smaller subsets
of the data to reside in active storage.




4. GP for Hyperspectral and Spectro-Polarimetric Data

The goal of this research project was to construct a computer-assisted de-
sign system for the discovery of classification algorithms and germane band
information, via a small number of examples of sensor data from user-
defined classes. This system is built around genetic programming to auto-
matically develop classification algorithms that will perform pixel-level spec-
tral classifications of HS data.

4.1 System Design

Figure 9. Data flow of
current system.

Daida, Hommes, et al. (1996), Daida, Onstott, et al. (1996), Daida, Bertram,
Polito, and Stanhope (1999), Daida, Polito, Stanhope, Bertram, Khoo,
Chaudhary, and Chaudhri (2000) have been using a GP software package
called “lil-gp” (Zongker and Punch, 1995) for other GP research efforts.
Daida’s research group has made several modifications in it (Daida et al.,
1999). This modified version of “lil-gp” is the core of the system reported
here. I had previously developed a number of MATLAB® scripts and func-
tions for the manipulation of HS image cubes. Together, these were used to
create the system design in figure 9, an early version of which was pre-
sented in Rauss, Daida, and Chaudhary (2000).
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4.2 Imagery Used

The goal of this project was to demonstrate two things: first, that it is pos-
sible to use GP techniques to classify pixels in a spectral or SP image. Sec-
ond, it is potentially useful to do so. We planned to show that this could be
done by using as many existing software tools and modules as possible.
There was little point in designing a streamlined, user-friendly, optimized
system from scratch if it was not going to be useful. Following the data flow
in figure 9, the system’s modules are now described.

Obviously, before one can begin to even design such a system, some data
must be available to evaluate each module and the complete system. The
data used for this effort are from an experimental SP sensor developed un-
der the auspices of the Federated Laboratories Consortium by Carnegie
Mellon Research Institute (Denes, Gottlieb, Kaminsteyi, and Huber, 1997).
The imagery was collected for the U.S. Army Research Laboratory (ARL)
(Gupta, Dahmani, Gottlieb, Denes, Kaminsky, and Metes, 1999) in 1998. This
system (hereafter referred to as the acousto-optical tunable filter [AOTF])
has a spectral range from 0.46 to 1 micron and has a tunable spectral resolu-
tion, usually 10 or 20 nm. The system uses an AOTF to create narrow band
filters to capture snap shots of a scene with a charge coupled device cam-
era. We can select both the bandwidth and center wavelength of the filter
by adjusting the acoustic frequency input to the filter. This system also in-
cludes a phase retarder that is used as a polarization filter. This allows the
collection of polarization information for each spectral band.

The imagery used for this work is spectro-polarimetric, with 28 spectral
bands and 4 polarizations for each band: vertical (0 degrees), horizontal (90
degrees), and +45 degrees. This gives the full cube 112 bands. Four image
cubes with the same spectral and polarization characteristics were identi-
fied from the data available. One image cube was used as the cube from
which training data were extracted. While none of the images are well
ground truthed, it is possible to clearly identify five distinct classes in the
training image, from which training pixels could be extracted. Figure 10
shows a single band of the training image from this system.

4.3 Spectral Image Cube
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After the training data to use were identified, it was necessary to assemble
the various tools to allow the visualization of the data. As figure 9 shows,
most of the tools were written in MATLAB®. The AOTF data had been re-
corded as single .bmp files for each polarization and spectral band. Using
MATLAB's image processing toolbox, it was simple to use the imread () func-
tion to automatically read the .bmp files into a three-dimensional MATLAB®
variable. This variable is the spectral image cube. The final cube size is 480
by 640 by 112 (y dimension by x dimension by spectral bands). This single
three-dimensional MATLAB® variable was then saved and used for the
remainder of the project. The .bmp files could then be removed from the
active disk area. The same was done for the other three evaluation images.




Figure 10. Band 72 of
AOTF image from
which the training
pixels were extracted.

4.4 Target Classes

The next step in the process is definition of the classes to be learned by GP.
Class definition is one of the most critical steps in the process. Identifying a
single spectrum as more than a single class would make it impossible to
“train” any supervised learning system. For the AOTF data, five classes
were identified: grass, pad, wall, barrel bright, and barrel dark. These five classes
are rather obvious. I was reasonably confident that these classes could be
learned because I had previously trained a neural network with the same
training data, which had little trouble learning to separate these classes.

Figure 11 shows Band 76 of the SP image cube. The circles and x’s depict the
approximate location of the ten pixels extracted for training spectra for two
classes. The x’s represent the 10 pixels chosen as the class grass. The circles
represent the class labeled pad. While there is no ground truth available for
these data, I believe the pad is an area of bare earth, perhaps a parking area
in front of the building.

Figure 12a shows an enlargement of the left side of the building. This area is
where the ten pixels of the class wall were extracted. The crosses show the
approximate location of the pixels used for training.

Figure 12b shows an enlargement of the barrel. The upper dark portion of
the barrel was defined as the class barrel dark. The bright pixels show the
approximate location of the ten pixels extracted for the training set for this
class. The lower section of the barrel is defined as the class barrel bright.
The black pixels in this area show the approximate location of the ten pixels
chosen for this class.

25




Figure 11. Single band
of AOTF spectral
image showing
approximate areas
where training pixels
for grass (X) and pad
(circle) classes were
extracted. (Note:
image is 640 by 480
pixels in size.)

Figure 12. a and b:
Enlargements of Wall
and Barrel with
approximate location
of training pixels
marked.
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4.5 Training Pixel Extraction
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I had previously written a MATLAB® script that loaded a spectral image
cube and displayed a simulated broadband image, created by summing
each pixel over all the bands. Using this image, the user can zoom in on
areas to allow selection of individual pixels. The user defines a class num-
ber and clicks on as many pixels as is desired for a training sample. The
locations of these pixels are then used to extract the spectra of each pixel
and store them in a MATLAB® 2-D variable for each class. Figure 13 shows
the spectra of 20 random pixels from each class. Ten of these from each class
were used as the training pixels.




Spectra of 20 random grass pixels

Spectra of 20 random pad pixels
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Figure 13. Raw intensity values of 20 pixels from each class. (Ten from each class were used as training
data.)

After extraction of all the training pixels desired for each class, another
MATLAB® function is called. In order to remove intensity information, it
takes the class variables and normalizes each spectrum individually to a
range of -1 to 1. Normalization of individual pixel spectra to a range of -1
to 1 removes the possibility of the GP using intensity as a discriminant (see
fig. 14).

27




Barrel-Dark

—1 A 1. 3. 1 1
Barrel-Bright -

Figure 14. Normalized training spectra for each class.

Intensity will vary greatly, depending on the changing illumination. For
example, in figure 12b, the left side of the barrel appears to be in the shadow.
With intensity values in this image, it would appear that the left side of the
barrel is different from the right side.

However, this is just an effect of the illumination, which appears to be com-
ing from the right side of the image. The spectra of the two paints on the
barrel will not change—only the intensity of the curves change (see fig. 14).
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Normalization removes the task of discovering that intensity is not a useful
feature and should result in a more generalized classification equation. These
results can then be used on a broader set of data. As the function normalizes
the data, it writes the spectral vector to a text file, which can be read into the
GP software.

4.6 GP Software and Parameter Selection

4.6.1 The GP Software

The GP portion of the system was built around the lil-gp software package
(Zongker and Punch, 1995). The version used for this effort is a patched
version (Daida et al., 1999). At the start of this project, lil-gp only recog-
nized a single terminal (variable) x. Lil-gp could only generate equations
such as (x+x+3)*4/x . To use lil-gp on multiband imagery, it was necessary
to expand lil-gp’s capability to accept a large number of variables—in this
case, the intensity values for each band in the data. Shahbaz Chaudhary
made the necessary modifications in lil-gp to recognize multiple, indepen-
dent variables (the bands). To avoid modifying the core code of lil-gp, the
capability to recognize multiple variables was added through modifications
of the user-defined functions that lil-gp uses. As a result of this modifica-
tion, lil-gp could now generate equations with multiple variables such as

(*(/(+(+ bl b2) b3)(-(+ b4 b5) b6))(/ b7 b7))

in which b# represents the band number the value is taken from, bl for
band 1, b7 for band 7, and so on.

To limit the amount of initial development required with lil-gp, only the
simplest of operators: +, —, ¥, and protected division (/) were used. Pro-
tected division differs from normal division in that division by zero returns
a one.

The lil-gp software is flexible enough that additional mathematical opera-
tors may be added with minor effort. Furthermore, logical operators may
also be implemented (see the lil-gp documentation for details [Zongker and
Punch, 1996}). These additional operators may be useful for HS image proc-
essing but were beyond the scope of this investigation.

4.6.2 Parameter Selection

Lil-gp reads an input text file that contains the parameters used for initial-
ization and processing control. Most of the parameters used are similar to
those mentioned in Chapter 7 of Genetic Programming: On the Program-
ming of Computers by Means of Natural Selection (Koza, 1992): population
size = 100, crossover rate = 0.9, replication rate = 0.1, population initializa-
tion with ramped half and half, initialization depth of 2 to 6 levels, and
fitness proportionate selection. Other parameter values were maximum
generations = 100 and maximum tree depth = 20. “Population size” is the
number of equations to be randomly generated for the starting population.
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Figure 15. Example of
symmetric and
asymmetric trees.
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The “cross-over rate” and “replication rate” define the probability that a
selected equation tree will be bred or replicated. Note that the mutation
operation is not used in the work reported here.

The “population initialization” parameter “ramped half and half” means
that during the generation of the initial population of equation trees, ap-
proximately half of the time the tree will be built in a balanced manner so
that the resulting equation tree is symmetric. The other half of the time, the
tree will be grown by augmenting randomly selected nodes, which often
results in asymmetric equation trees (see fig. 15). The “initialization depth”
of 2 to 6 indicates that during the initial population generation, a tree has a
20 percent chance of being built to a depth of 2, 20 percent to a depth of 3,
and so on. Therefore, the initial population will have a relatively even dis-
tribution of trees from depth 2 to 6. The distribution is only relatively even
because there are conditions when tree growth may be stopped before it
reaches the target depth. Also note that duplicate trees are prohibited.

“Fitness proportionate selection” means that the probability that a given
equation will be selected for breeding or copying into the next generation is
proportional to its “fitness,” how well it solves the given problem. The “maxi-
mum generations” of 100 indicates that only 100 generations of equations
will be evolved. If a 100 percent correct solution is not developed by this
time, the run is to be stopped. Finally, the “maximum tree depth” is the
largest tree depth allowable for any evolved equation.

With any text editor, modifications of the parameter file of lil-gp can be
made. “Population size” (the number of equations in a population) varied
as the system developed. Early evaluation runs were done with a value of
100; later runs, reported in section 5.4, used a population size of 10,000.
Other settings that were changed during development were the “maximum
tree depth” and the “selection method.” Maximum tree depth was reduced
from 20 to 15 during later runs based on unpublished (to date) results from
other research in Daida’s research group, which indicated that a tree depth
of 20 may be too large to produce useful results. Daida’s work seems to

Symmetric tree; depth 3. Asymmetric tree; depth 4




4.6.3 Batch Runs

show that GP applied to other (albeit smaller) problems rarely finds useful
solutions beyond a tree depth of 10 to 15. The fitness selection method was
also changed from “fitness proportionate” to “fitness overselect.” For large
population sizes, a “greedy overselect” method is recommended. In this
method, the population is partitioned into two groups. The separation of
the populations is done by ordering the trees according to decreasing accu-
racy and then selecting the top X% of the equations as Group 1. The remain-
ing trees are Group 2. X is based on the population size. The default setting
is 320/ population size. Based on this separation, 80 percent of the time, a
tree is selected from Group 1. Once a group is selected, the specific tree
selected is chosen in a fitness proportional manner.

The input file also contains the starting random seed and the target class for
identification. The random seed defines the resulting content of the starting
population. With all other settings remaining the same, a change in the ran-
dom seed will result in a different starting population. Thus, by running lil-
gp many times and changing the random seed each time, we make a sto-
chastic sampling of the entire set of possible equations. Many more alter-
nate settings may be used (see the lil-gp user’s manual [Zongker et al., 1996]
for full details).

In order to assess the usefulness of an equation, the equation’s response is
evaluated with some type of fitness function. The fitness function used in
this work is very simple. It was designed to separate one class from the
other four. The choice of the “desired” class is made selectable through the
use of a variable in the parameter definition file. The actual fitness func-
tions used are discussed later in section 5.4. By defining which of the five
classes to use as the “target” class in the input file, it is relatively easy to
maintain all the other settings the same and obtain results for the different
classes (see the next sub-section about batch runs). The fitness function is
currently two “if statements,” one checking if a training pixel defined as the
target class returns a response in the appropriate range and the other check-
ing if a training pixel from any of the non-target classes returns a response
in the appropriate range. The fitness function is relatively easy to modify
and can be as sophisticated or as simple as one wants. Initial development
used a simple zero threshold. It checked whether the target class responded
with a value >0 and non-target classes with a value <0. Several other fitness
functions were used and are discussed in section 5.4. The number of train-
ing pixels correctly classified defines the performance of an equation.

Lil-gp is restricted in the size of the initial population of equations it can
generate because of computational and memory constraints. Furthermore,
it only reports the first equation that obtains the best results. Other, equally
successful equations may exist in its population, but they are not reported
in the current implementation of the lil-gp software. For these reasons, lil-
gp needs to be run repeatedly, each time with a different random number
seed for initialization.
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4.7 GP Output

Figure 16. Example of
a simple .bst file from
alil-gp run.
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To automate the process of running lil-gp with different random seeds, a
“perl” script used by Daida’s group in an earlier project was modified. This
script performs two tasks. First, it cycles through each of the five classes as
the “desired target” for a given random seed, resulting in a solution equa-
tion for each class. Second, the script loops through a series of random seeds
over a given range. This allows an experiment to be set up to generate equa-
tions to separate each of the five classes from the other four over a range of
different starting populations, without further monitoring by the user. This
is useful as even the small number of runs done for this work (20 to 23
different random seeds for each class) took almost 48 hours to complete.
While working on a problem with data sets this large is uncommon for GP
at this time, it is believed that to obtain an adequate sampling of the equa-
tion space for a nearly optimal solution, hundreds of different random seeds
must be used and the results of each must be evaluated.

Lil-gp generates a number of result files. The only one of significance to this
report is the .bst file. This file contains the first “best” equation from the
current generation. Figure 16 shows the contents of a .bst file for an early
single polarization run; only 28 spectral bands of a single polarization were
used.

This text file contains other useful information besides the equation. Gen-
eration is the generation in which this equation first appeared. Nodes is the
number of nodes in the tree. In the example, the value is five. Looking at the
last line in the example, these five nodes are —, —, b27, b8, and b9. Depth is
the depth of the tree. Hits is the number of correct answers that this equa-
tion gave for the training data. Raw fitness is just the number of correct hits.
Standardized fitness is the number of incorrectly identified training values.
Adjusted fitness is 1/(1+standardized fitness), an artifact from an earlier
implementation of lil-gp.

=== BEST-OF-RUN ===
generation: 14

nodes: 5
depth: 2
hits: 47
TOP INDIVIDUAL:
- #1 -
hits: 47

raw fitness: 47.0000
standardized fitness: 3.0000
adjusted fitness: 0.2500
TREE:
(- (- b27 b8) DbI)




4,8 The Parser

Lil-gp produces its best equation tree in a operator-lhs-rhs (prefix) style,
resulting in equations that look like this test equation:

(*(/(+(+ bl b2) b3)(-(+ b4 b5) b6))(/ b7 b7)) (1)
in which b stands for band.

MATLAB® is used to process imagery with a GP equation. MATLAB®, how-
ever, requires a standard mathematical (infix) format (lhs-operator-rhs).
Again, fortunately, a parser was available form earlier work by Daida’s group
(Daida et al., 2000). The parser is built with “lex” and “yacc” (standard pro-
grams common in most UNIX C programming packages). Lex is used to
construct a token generator to read the equation, extract tokens, and ex-
ecute specific C instructions upon finding certain tokens. The lex code was
designed to evaluate and simplify instances of *1, /1, +0, and -0, and to
check for instances of var/0, which is replaced with 1, since protected divi-
sion is used. Lex generates a lexical analyzer for use with yacc. Yacc creates
the program that performs the actual parsing and produces the reordered
(and possibly simplified) equation. This results in equation 1 being parsed
and transformed into

(((b1)+(b2))+(b3))/ (((b4)+(b5))-(b6))) )
The parser was designed to parse files generated from batch runs in a single
call. The parser saves the parsed results in a single text file. As a result, by
using the proper file name to identify the target class, the parser generates a
single text file with all the parsed equations for the target class. The parser
was modified to accept multiple variables, since its original implementa-
tion, like lil-gp, was designed for only single variable problems.

A useful feature of the parser is that the number of correct responses (hits)
that an equation gives for the training data can be used as an acceptance
criterion for parsing an equation. For this effort, the value was arbitrarily
set to 45. Forty-five of the 50 training pixels must be correctly identified by
the GP equation for it to be processed and put in the parsed equation file.
Equations with fewer than 45 hits will not be parsed. This culls the poor
performers from the parsed result file.

4.9 Evaluate Batch Results

The resulting equations from the parser can then be copied into a MATLAB®
script designed to process three small chips from the AOTF training image.
The use of chips to compare equation performance is the most recent addi-
tion to the system data flow. Since processing a complete AOTF image may
take well over an hour per equation, it became obvious that for batch runs
of the size needed to identify optimal solutions, it would take days to run
the image through every equation obtained. It would be very inefficient to
process the data this way, as only a small percentage of the equations are
expected to perform at an acceptable level.
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Figure 17. Image chips
used to evaluate batch-
generated equation
performance. (Left
chip contains both
barrel classes, with
some grass and pad.
Center chip contains
grass and pad. Right
chip contains wall,
grass and pad.)
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The chips are spectral image cube subsets of the full AOTF training image.
Each of the five classes appears in at least one of the three chips. The chips
were chosen to be small enough to greatly accelerate the processing but
large enough for one to visually evaluate each equation’s performance in
separating the classes.

Three image chip files are used to pre-screen the equations for usefulness
(see fig. 17). The results reported here come from batch runs of 20 to 23
trials. To process the complete image for a single class for all 20 equations
would take approximately 20 hours to complete. Using the chips, all 20
equations take only 40 to 60 minutes to process. Displaying the resulting
classification images for each equation, it was possible to visually deter-
mine which equations had the most potential. The number of useful equa-
tions for a class separation varied from two (rather poor ones) to nine. The
longest complete image run for nine equations of a single class took just
under 7 hours.

Note that MATLAB®, being an interpreted computer language, is not very
fast. Should large runs be necessary, it may prove valuable to move to a
compiled language such as C or C++, which would greatly increase the
speed of processing.

These image classification chips, saved as MATLAB® multidimensional
variables, can then be displayed and evaluated. This resulted in a collection
of five chip sets, one for each class separation. Appendix A shows two ex-
amples for each class. These classification chips were displayed and scored
subjectively as to their success in highlighting the desired class and sup-
pressing the other four classes.

While there may be bounds on the acceptable returned value from an equa-
tion during training, there are no bounds on the responses of the equations
during the processing of images and chips. As a result, there are often some
very extreme values in the resulting classification images, which makes vi-
sualization of the raw results difficult. To generate a useful visualization of
the images and chips, an adjustment in the gray scale of the image is made.
For all the classification images and chips shown here, the gray scale was
set to saturate to black at a value of —0.01 and saturate to white at a value of
0.01, essentially creating a binary image thresholded at zero.




The two “best” wall equations demonstrate the point that the 20 runs per-
formed may not have adequately sampled the equation space. These two
equations are obviously not very good with many false positives and false
negative responses.

4.9.1 Protected Division in MATLAB®

While we were trying to process early results, a problem arose. The diffi-
culty was discovered to be a difference in how division by zeros was handled
in different system modules. Division by zero in MATLAB® returns a value
of INF, while GP returns a 1. MATLAB® does not perform protected divi-
sion as a matter of course. However, it is possible to overload MATLAB®
operators. After some investigation and experimentation, it was found that
it is possible to overload the mrdivide (/) function of MATLAB®.

To overload a MATLAB® operator, a directory must be created, based on
the type of variable upon which the operator is to work. In this case, the
default data type, double, is to be overloaded. A directory labeled “@double”
is used, where the overloaded function is stored. By using the addpath com-
mand to tell MATLAB® in which directory the @double directory resides,
any divide operation with a value of type double will execute the new
mrdivide function instead of the default MATLAB® operator.

The overloaded function was quite simple (see fig. 18). The function checks
the value of the divisor; if it is zero, it returns a one; otherwise it calls the
built-in MATLAB® divide operation and does double division as normal.

4.10 Processing Full Images

Figure 18. User-
defined mrdivide.m
function for doing
protected division in
MATLAB®.

After the chip images are processed, the chips can be displayed with
MATLAB® and evaluated. The better performing equations are used in a
MATLAB® script (which is nearly identical to the script used to process the
chips) to process the entire image cube through each of the selected equa-
tions. The run time depends on the number of equations used and on the
complexity and length of the equations.

function[x]=mrdivide (a,b)

if b==0
x=1;

else
x=builtin('mrdivide’',a,b);

end
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5. System Testing

5.1 Lil-gp Multiple Variable Evaluation

During the system development, several evaluation data sets were gener-
ated to evaluate each module’s performance as it was developed and to
evaluate the entire system.

To evaluate the modifications made in lil-gp for multiband processing, a
simple evaluation file of two classes of two bands was generated (see table 5).

The obvious solution is to examine Band 2; if it is negative, it is class 1, if
positive, it is class —1.

5.2 System Evaluation

A similar evaluation image was generated to evaluate the entire data flow.
A 20-pixel-high by 10-pixel-wide image of two bands was constructed with
two classes. The first band for both classes contains random values from 0
to 1. Band 2 for Class 1 also contains random values from 0 to 1, while for
Class 2, it contains random values from -1 to 0. See figure 19 for an image
representation of the two bands.

Table 5. Data file used

for GP software Class Value Band 1 Band 2
development and
evaluation. 1 .75 -.75
-1 3 3
1 .6 -6
-1 4 5

Figure 19. System
evaluation image.

Class 1

Class 2

Band 1 image Band 2 image
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From this image, 10 pixels of each class were extracted by the pixel-picking
tool. The two class variables were then sent to a text file with the training
vector generation tool. Table 6 shows those values.

This file was supplied to the GP learning algorithms. The results of that
learning are shown in figure 20.

Although it is not the most efficient representation, GP has discovered the
most obvious answer (simply examine Band 2). The reason the most effi-
cient representation is not discovered is because of the minimum tree depth
constraint, which is set at two. This shows a strength of the GP method.
Being unable to find the simplest solution, GP found an equivalent using
+b1and -b1 to pad the tree. Also of interest is the fact that this equation was
generated in the initial population, Generation 0. For completeness, figure
21 shows the result from parsing this file. The equation on Line 2 of figure
21, after the :=, is copied and pasted into the GPimage.m program to pro-
cess the whole image. The result, as expected, is the Band 2 image of figure 19.

5.3 Real Data: 28 Bands (one polarization)

Table 6. Training
values from
evaluation image (fig.
19) presented to GP to
validate modifications
for multiple variables.

The first evaluation with real data was conducted with only the 28 spectral
bands of one polarization. This was done because it made sense to slowly

Number of Total number of  Size of each
classes training vectors vector
2 20 2
Class Band 1 Band 2

1 0.606843 0.314217
1 0.485982 0.365078
1 0.485982 0.365078
1 0.891299 0.39324
1 0.198722 0.346112
1 0.198722 0.346112
1 0.418649 0.457354
1 0.465994 0.46077
1 0.746786 0.855976
1 0.0152739 0.422452
2 0.285939 —0.895202
2 0.394128 -0.942387
2 0.261819 -0.868635
2 0.783859 —0.241172
2 0.783859 —0.241172
2 0.56919 —0.85293
2 0.56919 —0.85293
2 0.014233 —0.569481
2 0.228039 —0.152594
2 0.713354 —0.791832
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Figure 20. Best-of-run
equation using values
in figure 19 as input.

Figure 21. Parser
results for the
previous equation.

5.4 112 Bands
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=== BEST-OF-RUN ===
generation: 0
nodes: 5
depth: 2
hits: 20
TOP INDIVIDUAL:
- #1 -
hits: 20

raw fitness: 20.0000
standardized fitness: 0.0000
adjusted fitness: 1.0000
TREE:
(- (+ bl b2) bl)

OutputForm[Random #1]

FIX 1:=(((b1l)+(b2))-(bl))
Expand[£f [X]]
Simplify[f[X]]

Factor [f[X]]

PlotAll[f]

increment the data file size, since it was unknown how much time runs
with real data would take. The GP code was set for 28 bands and a run was
executed. Only one run with a single random seed was performed. The
program successfully reached completion, resulting in a best of run equa-
tion shown in figure 22. Parsing this file resulted in figure 23.

Using this equation in the GPimage.m file and running it results in the im-
age in figure 24. The classification chosen here is grass versus everything
else because it was felt that this separation would be the easiest classifica-
tion. This is believed to be a simple problem because MS data can easily
produce such results with equations as simple as the NDVL. The classifica-
tion that the GP is trying to make is “grass responds with values >0, every-
thing else, <0”. It is the same evaluation function used in the two-class evalu-
ation in section 4.2. No attempt was made to find a good evaluation func-
tion for these data; yet this simple equation does appear to work some-
what. This is a very encouraging first run, especially considering that only
10 pixels of each class were presented for learning.

Compare figure 24 with figure 10. It shows that the GP solution does high-
light a number of distinct objects from the grass. The pad area in the center
of the image shows very nicely the narrow strip of grass that separates this
area horizontally in the center. In addition, the two fence posts in the back-
ground show very well.

With the success of the single run for the 28 band data, runs with the full 112
bands began. Several different fitness functions were experimented with in

some of the early runs.




Figure 22. Best-of-run
results on single
polarization image.

Figure 23. Parsed GP
equation for single
polarization AOTF
image.

Figure 24.
Classification image
for grass using
equation from single
polarization GP run.

=== BEST-OF-RUN ===
generation: 14

nodes: 5
depth: 2
hits: 47

TOP INDIVIDUAL:

— #] -
hits: 47

raw fitness: 47.0000
standardized fitness: 3.0000
adjusted fitness: 0.2500
TREE:
(- (- 27 b8) b9)

OutputForm[Random #1]
FIX J1:=(((b27)-(b8))-(b9))
Expand[f[X]]
Simplify[f[X]]
Factor [£[X]]
PlotAll[£f]

100 200 300 400 _ 500 600

5.4.1 Fitness Function: Thresholding; Target > 0, Non-Target < 0

The first experiments were conducted with the same threshold case as with
the 28 band evaluation in section 5.3. If a training pixel was defined as
target pixel and the equation response for the pixel was greater than 0, the
hit counter was incremented (a correct identification). If the pixel was non-
target and the equation response was less than 0, the hit counter was
incremented (also a correct identification). The total number of correct hits
is the score for the equation.

This fitness condition resulted in equations with an unacceptably high false
alarm rate. However, only three different random seeds were used, so it is
impossible to accurately state that this fitness function is not useful, only
that it has not been fully investigated.
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5.4.2 Fitness Function: Thresholding; Target > 1, Non-Target < -1

To evaluate how forcing the output values farther apart would affect the
performance the fitness case was modified so that if a training pixel was
defined as target pixel and the equation response for the pixel was greater
than 1, the hit counter was incremented (a correct identification). If the pixel
was non-target and the equation response was less than -1, the hit counter
was incremented (also a correct identification). The total number of correct
hits is the score for the equation. This resulted in somewhat better perform-
ance of the resulting equation, but some extremely large values (+ 10e34)
were still found in the fully processed image.

5.4.3 Fitness Function: Bracketed; 1<Target<5, ~-5<Non-Target<-1

To try to reduce the number of these high values, the fitness functions were
again modified to force correct values into a bound range by specifying
both acceptable high and low values. If the pixel is a target pixel and the
equation response is between 1 and 5 (inclusive), count this as a hit, or if the
pixel is a non-target pixel and the response is between -1 and -5, count this
as a hit.

Specifying lower and upper bound did improve performance of the equa-
tions evaluated. This is the fitness function used for the results discussed
here. Further narrowing of the acceptable range may prove useful and should
be examined in the future.

5.4.4 Fitness Function Evaluation

Most of the early runs were done only on the grass classification task. As
mentioned earlier, it is believed that a grass (green vegetation) separation
should definitely be possible because of the success of performing this sepa-
ration with MS imagery such as the LandSat TM imagery. Additionally, only
one or two runs were done, except for the bracketed case. Therefore, the
conclusion that the bracketed case is better than the other two cases is not
truly shown. However, the runs used the same starting random seeds, which
should mean the starting equation population for the three fitness cases
should have been identical. Thus, any performance improvements could
reasonably be assumed to come from the differences in the fitness functions.

5.5 Addition of Constants as Terminals
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Forcing the system to use only band values to do class separations seemed
inefficient. This approach would probably tend to result in band differencing
and ratioing, which may not be the best approach to the problem. Earlier
work with neural networks showed that weighted sums would also work
well. With only the spectral bands as terminals, however, it would be nearly
impossible for GP to develop weighted sums. Furthermore, neural nets de-
pend on their ability to use a nonlinear threshold function. The only non-
linearity that GP could use is protected division, but again, it is nearly




impossible for GP to find a consistent division by zero when only using
measured data as the terminals.

A solution to both problems is to add constant values to the set of terminals.
A simple implementation was used to evaluate this solution, which should
allow GP to at least use its nonlinearity. The terminals zero and one were
added to the user-defined terminal set. To add additional terminals to lil-gp
requires modification of several of the lil-gp user function files. The lil-gp
instruction manual details where and how to do this (Zongker, Punch, and
Rand, 1996).

Several runs were done with the bracketed fitness function. The earlier
modifications of the parser had been made with the goal of making the
parser as general as possible. As a result, no modifications of the parser
were needed to parse the resulting equations. These results were compared
to the results in section 5.4.

Again, this is not an extensive investigation—just a quick comparison. The
comparison appears to show that inclusion of the terminals zero and one
do improve performance. However, this conclusion may be invalid. An
evaluation of batch runs for the five classes with random seeds from 1 to 23
was done with the chip images. Some batches were terminated early be-
cause of the difficulty of running larger remote jobs, and those numbers are
reflected in table 7. Each parsed equation was checked for occurrences of
the terminals zero and one. Table 7 shows the the use of terminals over all
the classes. From the table, we see that there is a nearly even split between
use of the terminal one and the use of neither of the new terminals.

However, of the 107 equations for all classes, only 30 show reasonable per-
formance when the chip results were examined. These 30 equations were
used to process the complete image cubes. Although none of the wall class
equations perform very well, two were extracted as examples for inclusion
in appendices A and B. Table 8 examines the use of the constant terminals in
the acceptable equations. In general, a similar split can be seen (ignoring
the wall equations since not even the two listed perform adequately).

The addition of other terminal values such as 0.5, 0.25, or perhaps a series of
evenly spaced values from zero to one (10 or 100 samples) may further im-
prove performance. This may allow the evolution of weighted band values.
Weighted band values may allow GP to develop more general equations.
These equations may appear more like PCA or neural network solutions
since weighted bands are the basis of these techniques.

Table 7. Number of equations that used the new terminals.

Terminals All classes Grass Pad Wall Barrel-Dark  Barrel-Bright
Total=107 Total=23 Total=22 Total=21 Total=21 Total=20

Only 1 50 12 10 8 4 16

Only 0 10 1 3 3 2 1

Both 4 0 2 1 1 0

Neither 43 10 7 9 14 3
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Table 8. Number of “useful” equations that used the new terminals.

Terminals All classes Grass Pad Wall Barrel-Dark  Barrel-Bright
Total=32 Total=7 Total=5 Total=2 Total=9 Total=9

Only 1 13 2 2 0 1 8

Only 0 4 1 1 1 1 0

Both 1 0 0 0 1 0

None 14 4 2 1 6 1
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6. Evaluation Image Results

Based on the evaluation of the image chips, the 32 “best” equations were
used to process the training image and the three evaluation images. Ob-
serving the processed training image, it is difficult to say which if any equa-
tion for a particular classification performs better than the others. However,
by examining the equations’ performance on the three evaluation images, it
is possible to evaluate how general an equation is. Examining each equation’s
performance over the four images, the two “best” performing equations for
each classification were selected. Appendix B contains the four classifica-
tion images for each of the equations selected.

6.1 Processing the Entire Training Image

Figures 25 and 27 show two of the more favorable results on the training
image. It is impressive that GP, with the simple fitness function and simple
operators used, performs as well as it does. The added advantage of the GP
results is access to the actual equations that produce these classification
images (figs. 26 and 28 show the equation for the image shown in figs. 25
and 27 respectively).

Figure 25.
Classification images
for barrel bright; GP
equation 5.

((((((((((((b23)-(bS2))+((((b101)*(b111))*(D33))* (b56)))-((D26)+(03)))+(((((((b27)-(b55))+(((b70)/(b5))
+((b43)*(b112))))+((b83)(b72)))+((b97)*((((b97)+(b13))+((b107)+ (b20)))+(b112))})+ (((b101)*(b111}))
*((b67)-(b81))))+((097)*(((b55)+((b107)+(b20)))+ (b112)))))-((b36)*(b34)))*(((b96)-(b37))/((b28)
+(b34))))*(b33))-((b32)+(b75)))-((1.000000)+(((b7)+((b97)+(b23)))/({(((b8)+(b112))+ (((b100)*({(b101)
*(b111))*(((b70)+ ((b105)+(b19)))-(033))))/((((b67)-(b81))+((b10)/(b59)))* (((b83)/(04))/((032)/(b19))))))
-(((b96)-(b37))*(b32))))))-(0107))-(((b7)+((b97)+(b23)))/((((b8)+ (b112))+(((b100)* (((D107)+(b20))
+(((b68)-(b104))*(((b1)-(b5))+(((037)*(b43))*((0100)+(b84))))))/ ((((067)-(b81))+((b10)/(b59)))*(((b83)
/(b4))/((032)/(b19))))))-(b83))))

Figure 26. Parsed GP equation 5 used to generate figure 25.
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Figure 27.
Classification images
for Grass; GP
equation 1.

((((b44)+(08))+(((((088)+(b27))+(((b101)+(b17))+((b13)-(b97))))+(D112))-((b28)*(((((b26)+(b36)) +((017)
+(b75)))*(( 2)+(((b97)+ (((b51)*(b 7))-((025)*(b16))))+ ((062)+(b21)))))*(((090)+(b14))*((((b62)+(b21))
+((b41)-(b86)))- (((b30)+( 1))-((b111)-(b63))N)N)+(((((b86)/(670))*(((29)-(b49))*((b11)-(0109)))
/(((b108)+(b22))+ (b28)))*((b29)-(b63))))

Figure 28. Parsed GP equation used to generate figure 27.

6.2 Processing Evaluation Images

While the results look promising, there is one concern. This image is the
cube from which the training data were extracted. While it is significant
that these results can be obtained with only 10 training pixels of each class,
how will these equations perform on other cubes? The three other cubes
extracted from the data set available are used to examine how general a
solution these equations might be. Each of these cubes is very different. The -
first is labeled Fence (see fig. 29). It basically is a field with a brush line in the
background and some fence posts in the foreground. The second is labeled
Trucks (see fig. 30). It appears to be an image of a storage/parking area,
containing several vehicles, with a fence in the background. The final cube
is labeled Van (see fig. 31). It contains a passenger van in a grassy field. A
target board of some sort is on the left edge of the image. In some of the
result images a pickup truck appears to be in the background. Appendix B
contains the processed classification images from these cubes.

However, without accurate ground truth for these images, it is impossible
to accurately determine which equations are correct and which are not. For
example, look at the Trucks image processed through the barrel-dark equa-
tions Numbers 8 and 9 (see fig. 32).

These are very different results. However, without knowledge of the mate-
rials (or more precisely their spectra) in the images, it is impossible to say
with any confidence which equation processes the image cube better.

What about the two classification images in figure 33 processed for barrel
bright?

Without spectral sampling of the paint on the trucks, it cannot be deter-
mined if the paint is similar to the bright paint on the barrel. If it is similar,
then equation 5 is the better equation; if not, equation 1 is.




Figure 29. Evaluation
image Fence.

Figure 30. Evaluation
image Trucks.
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Figure 31. Evaluation
image Vain.

100 200 300 400 500 600

Figure 32. Evaluation
image Trucks
processed with barrel-
dark equations. (A:
equation 8, B:
equation 9.)

Figure 33. Evaluation
image Trucks
processed with barrel-
bright equations. (A:
equation 1, B: equation
5)
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7. Conclusions

This report has documented the first known application of genetic program-
ming techniques to the processing of HS and SP imagery. The results show
that this technique has significant potential for use in data mining and data
stream compression as well as in target detection and material classifica-
tion. The infrastructure is now in place to continue development of this
technique.

7.1 Areas for Future Investigation

Clearly, many areas remain for future investigation. Some of the more obvi-
ous are

* How would more training samples affect performance?

* Would training samples from more than one image cube improve
performance?

* Does the addition of the terminals 0 and 1 really make a difference?
¢ What about adding terminals between 0 & 1?
¢ What sampling over the 0-to-1 interval (how many) to use?
¢ Should the sampling be uniform or random?

¢ How does the fitness function affect GP performance?

¢ Is the bracketed range truly better than either of the unbound
thresholds?

* How would a fitness function forcing responses to equal -1 and 1
perform?

* How would more sophisticated fitness functions perform and what
would they look like?

* How general are the solutions?
* How do these solutions compare to other techniques?

* How would GP perform on different data sets such as AVIRIS,
SEBASS, or FTHSI?

No attempt has yet been made to analyze the current set of equations as to
what bands are being used. These may prove to be useful bands for the
compression of spectral data for transmission on the battlefield. Addition-
ally, looking at how the bands, constants, and operators are being used may
give some insight into the process for HS and SP detection and material
recognition.
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Appendix A. Best Equations

This table shows the two best equations of the 20 to 23 equations generated
for each class (see sect. 4.9 for details). For each target class, all the chips
were displayed and subjectively rated using a scale from 1 to 10 to rate their
potential usefulness as a classification equation for the image. Each was
judged on how well it performed in highlighting the desired class and how
well it rejected pixels of the other classes. The desired class is displayed in
white and the other classes as black.

Because of the way GP calculates its output values, there is no limit on what
an equation’s response to a particular pixel can be. Since these equations
were generated with the bracketed fitness function (see sect. 5.4.3), it was
decided to display the results as a binary image. The gray scale was set to
saturate at black at a value of -0.01 and to white at 0.01, effectively perform-
ing a binary threshold at zero. This removes the stretching that can occur
because of extreme values returned from some of the pixels. All the chips
and full images generated have some extremely high values, both positive
and negative. If the image is allowed to adjust the gray scale to these high
and lows, the entire image is a uniform gray except for a very few white
and black pixels that represent these outliers.

The first row of the table shows the chip labels. The second row shows a
gray scale intensity image of the clearest single band in the training image
cube, Band 72. The various classes can clearly be seen in these chips.
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Band 72

Grass Equation 1

Barrel chip

Pad chip

Wall chip

Grass Equation
13

Pad Equation 9

Pad Equation 22




Appendix A

Wall Equation 7

Wall Equation 12

Barrel — Dark
Equation 4

Barrel — Dark
Equation 9

Barrel — Bright
Equation 13

Barrel — Bright
Equation 14
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Appendix B. Processed Images

This appendix shows the classification images resulting from processing
the training image and the three evaluation images through the two “best”
GP equations for each class separation. The gray scale on the images was
set to saturate at +0.01, which results in a nearly binary image thresholded
at zero. The images show the desired class as white, as determined by the
equation’s value for that pixel. The other four classes respond with nega-
tive values and are displayed in black. The equation used to process the
image cube is shown on pages 59-68. Gray scale images of Band 72 for each
of the images are shown on page 58.
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Appendix B

Barrel image Fence image

Trucks image Van image
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Appendix B

Grass equation 1

Barrel image Fence image

us image T Van
+(((((b88) (b27))+(((b101)+(b17))+((b1 )(b 7)))+(b112))-((b28)*(((((b26)+(b36))+((b17)

))-((625)*(b16))))+((b62)+(b21)))))* (((090)+(b14))*((((b62)
))-((b111)-(b63)))))+(((((b86)/(b70))*(((b29)-(b49))*((b11)
(b29)-(b63))))

-+
((b97)+(((b51)*(b87
-(086)))-(((b30)+(b81
08)+(b22))+(b28)))"(
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Appendix B

Grass equation13

i

Barrel image Fence image

e gtk iy R

Trucks image Van image
(((((b28)+(b38))-(((b25)+(b111))*((b75)+(b53))))*((((b42)/ (b1 ))+((b106) +(b58)))-(((b60)-((b28)+(38)))
*(b77))-((((b2)/((((028)+(D38))+((b3)-(b11)))-(((b109)-(b10))-((b32)-(b22))))+((((b6O)-((083)+(b81)))
*((b55)*(b76)))/(((b31)+((b45)/(040)))/((b64)/(b105)))))-((((b101)-(669))*((b111)*(b25)))-((((b29)
+(b30))-((b105)-(b78)))*(((b17)*(b80))*((b15)- (b8 M) ((b97)*(b43)))-(((b89)+(b8))-((b58)*(b80))))
/((((b28)+(b38))+((b3)-(b11)))-(((0109)-(b10))-((032)-(b22))))))
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Appendix B

Pad equation 9

Barrel image

b i o o b

- S, SRR Sl

ks ia - | ‘ Van image
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Appendix B

Pad equation 22

Barre! image Fence image

Trucks image Van image

(b18)-(((((b4)/(b31))"((b60)-(b3 )))*(((b47) +((((b110)+(b110))-(((b112)+(b90))-(((((b95)/(b5))*((b47)
+(b18)))+((b14)+(b96)))+(b71))))/(b112)))*((b21)-(b4)))-((((b6)-(1.000000))-((((((((b18)+(((018)+(b4 1))
-(((b93)+(D74))-((b96)-(b44)))))+(((066)*(D72))+((DBO)-(039))))*((b89)-(((080)/(b15))*((b21)-(b4))))
-((b22)-(((((095)/(05))*((b80)/ ((b6) (1.000000))))+((b14)+(b96)))+(b71))))/(b112))/((b9)+(b16)))*((((b85)
*(b101))*((b66)*(b72)))/(((((b44)/((037)+(D112)))-(b89))+((((D42)/(b81))-(((b44)* (b3))"((b24)+(b30))))
/((b39)/((b30)" (b94))))) (((b16)-(049))+((b63)*(b5)NN))-(((((b44)*(03))*((b24)+(30)))/(b21))
*((((b85)*(b101))*((b66)* (b72)))/(((b19)+(b2))/((1.000000)+(((b95)/(05))*((((b4)/(D31))*(045))* ((((b4)
/(b31))*((b60)-(639)))*(((b47)+(b18))*((b21)-(b4))))*((b21)-(((((b4)/(b31))*((b60)-(039)))-(b46))-(((b47)

+(b18))*(bS))NNNMMN)

)
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Appendix B

Barrel image Fence image

i
:
i

=2

Trucks image Van image

—_

((({{{{b55)*((b83)*(b57)))-((b11)-((b49)+(bO1))))
b23))-((b11)/(b12)))-(((b21)/(b108))-(((((b89)
b78)-(b100)))+((b62)/(b81)))*((b86)*(b107)))

(( (((((((b102)-(b88))-((b35)+(079)))-((b107)-(b62)))
-((b78)-(

((((b90)*(b27))-((b90)/

o1y

((((C
+(b54))-((b61)+(b57)))-((((((089)+(054))-((b61)+(b57)))
)+((662)/(b81))))))+((b13)+(b25)))+((((((052)-(b84))
45)))+(((013)+(b25))-((b91)*(b111))))+(((((b102)~(b88))-((b98)+(b112)))
79)))-(((091)*(b111))-((b2)/(b14))))))-((b98)+(((D52)-(bB4))/((((b24)-(b58))
111))))+(((((0102)-(b88))-((b98)+(b112)))-(((b21)/(b108))* (b82)))-(((b91)
(((b40)-((b13)+(b97)))*(b82)))-((((({(b67)-((b80)+(b43)))*(b79))-((b11)/(b12)))
b68 ((b71)-(633))+((((((b57)/(055))/(((b11)-((b35)+(b79)))-(((090)*(b27))-((b90)/(b45)))))
E)(:D;IS)S);HE()QS)) ((b57)/(b55))))-(078))-(((b92)*((((b83)* (b9))-((b49)+(091)))-(((0102)-(b88))-((b98)

+(b91)))-
))-((b2)/(b14))))))-(((((((b57)/(b55))-(((b83)*(b9))-((b49)+(b91))))+(b23))-((b11)/(b12)))
(1(b90)*(b27)) +((b62)/ (b8)1)))*

/
(

(
(b67)-((b80)+(b43)))*(
((b13)+(b25))-((b91)*(
111))-((b )(b14)))))))

8)*(b9))*( (b3

+A,\\A+

*

b
b
b
(b )-
-((b6
+(
+(
-(( ((b86)"(107))))+(((b105)+(b95))-((((b8 9)+(b54)) ((b61)+(b57)))-((b78)
-(b100))))))))*(((b90)*(b27))-((b63)*(b6))))-(((b57)/(bS5))-((b2)/((b57)/(055)))));
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Appendix B

Wall equation 12

Barrel image Fence image

Trucks image Van image

5)/((((((028)*(b108))/(((p87)-(b35))/((b2)+(b183))))/((0.000000)-((((b103)-(b73))*(b6))+((b6S)
)/(((b19)+(b95))-((b12)+(b13))))- ((((b103) (b73))-((b31)+(b72)))*(((((((b22)+(b95))
b95)))-((024)+(b12)))+((b65)+((b87)+(b26))))/((019)+(b95)))-((046)/(b43))))))+(017))*((b28)
b43))))/((b103)-(b73)))+((((((b87)+(b17))-((((((b12)+(b13))-(((b103)-(673))-((((b47)"((b28)
b108)))/(((b108)*(b86))/ ((b19)+(b95))))/((b19) (095)))))-(((b2)-((b87)+(b26)))/((050)-(b35))))
(b8))*(b25)))+(((b2)-(((019)+(b95))-((b57)/(b6))))/((b50)-(b35))))+((b19)+(017)))-((b24)+(b12)))

+
o
N
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Barrel-Dark equation 4

Barrel image Fence image

Trucks image Van image

(((((b51)+((b29)+(((b77)-((b87)-(b27)))/(b80))))+(b95))+((((((b14)+(b21))+((((((((b76)"(b48))"(b21))
*(((b6)+(b111))+(b98)))*((D103)+(b95)))*(((({((b94)-(b24))/((b33)/(b32)))*((629)-(b35)))*((679)/(095)))
*(((b2)+(b18))*(((b76)*(048))/(670))))+((b10)-(b4))))+((((((060)*(b56))+(b111))+(b96))-(((b95)/(b10))
-((b48)/(b70)))+((((b2)-(b29))+(b111))+((b54)*(091)))))*(055)))+((((044)+(D108))-(((010)-(b91))
-((((b103)+(b95))+((b112)+(b17)))-((b10)-((b48)/(b70))))))-((((098)+(b41))/((((((b77)-((b87)-(b27)))
+((0103)+(b95)))-(((b95)/(b10))-((b39)-(b14))))-( 4))/((b33)/(b32))))/(b70)))-((b9)-(b41)))))

))-(((b10)- g

( )- 1 (b
-((((b87)-(b27))/(010))-((b48)/(b70))))+((b25)*((b44)+(b108)))))-((D10)-((b48)/(670))))
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Appendix B

Barrel-Dark equation 9

Barrel image Fence image

Trucks image Van image
((b81)-(((b71)-((((((b7)/(b4))-((b73)-(b9 )))+(((b108)( 69))+((b11)+((b5)/(b100)))))+(((b4)+(b12))
+(((b8)/(b15))*((b13)/(b21)))))- (((((b51)*<(((b77) (b1))/(((b35)*(b53))-(((b21)-(b93))-((b73)-(b107)))))
+((b73)-(b9))))*((b6)*(b21)))/(((b74)/((b111)-(b72)))/(((b7)/(04))-(((b6)* (b21))+(b78)))) +(((b7)/(b4))
-((020)+((((b79)-(b5))+ ((b73) (b1 7)))/(((b25) +(b98))+(((b93)+(b47))*((b44)+(b23)))))))))-(((036)
+(099))/((((b112)*(b13))/((b112)-(b55)))* ((((((b8)/(b15))*((b13)/(b21)))+((b79)-(b5)))/(((73)-(9))
-((b25)+(b98))))/((b79)*(D22)))))))+(097)))-(((b29)+(b105 )) (((b111)-(b34))+((b33)+((b44)
+{((((b51)*((((b77)+(b1))/(((b35)*(b53))-((b7)/(D4))))+((b112)-(b55))))"((b )(b21)))/((((b 4)/((b111)
-(b72 )))/(( 6)"(b21)))+(((b7)/(b4))- ((b20)+((((b79)( 5)+(((b112)*(b13))/((b112)-(b55))))
/(((025)+(b98))+(((b7)/(b4))*((D44)+(b23))))))))* (0 10)))))-((b58)/((((b77)-(092))*((b37)-(b71)))
-(((b70)*(b70))+((b21)-(b93))))))))
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Appendix B

Barrel-Bright equation 13

Barrel image Fence image

Trucks image Van image
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Appendix B

Barrel-Bright equation 14

Barrel image Fence image

Trucks image Van image
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